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Abstract

Classical geometry satisfies two crucial properties. Through a given
point and to a given line, there is a unique parallel line (parallel axiom)
and for two distances, it is always possible to take the smaller and add
it up finitely many times to exceed the bigger (Archimdes’ axiom). The
relaxation of the first property has lead to hyperbolic geometry, where
there are many parallel lines to a given line through a given point.
The negation of Archimedes’ axiom leads to an algebraic consideration
of planes over arbitrary fields. This thesis discusses three models of
geometries, where both axioms are unsatisfied. Building on classical
models of the hyperbolic plane, we extend the notion of distance to non-
Archimedean base fields. This naturally gives rise to a metric space that
is shown to have tree-like properties.

An article by G. W. Brumfiel contains the construction of the distance
function and the metric space of a hyperbolic plane over a non-Archime-
dean field and it is shown with geometrical tools that it is a tree. We
elaborate on these ideas and give more detailed proofs for many of
the statements (some of them were left as an exercise for the reader
by Brumfiel). We will additionally include a classification of ordered
fields with many examples. The purely analytic constructions are also
compared to the axiomatic desription of geometry by Hilbert.
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Introduction

In his book Grundlagen der Geometrie, Hilbert introduced a system of axioms
for geometry, organizing the different geometries, mostly the Euclidean
plane and the hyperbolic plane. The requirement and independence of the
axioms was studied, see [5] for an overview. Later, more exotic combina-
tions of axioms were tried out. Non-Archimedean hyperbolic planes were
investigated with algebraic methods, for example by Morgan and Shalen [8].
Brumfiel [2] then provided a geometric proof of the results.

The purpose of this thesis is to give a more accessible explanation of the
results in [2]. Brumfiel often declared statements as common knowledge or
left the proof to the reader. We will give detailed proofs of the statements,
allowing people without profound knowledge about hyperbolic geometry to
access this field. In particular chapters 1 and 3 suit well as an introduction to
the study of the hyperbolic plane. Throughout, we will focus on Euclidean
fields (fields with square roots), as they simplify the proofs. To enhance the
understanding, we will also give many examples of ordered fields, as well
as a classification to provide tools to come up with new ones in chapter 2. In
chapter 4 we state and prove the theorem that the metric space associated to
a non-Archimedean hyperbolic plane is a (Λ-)tree. As we start from a field
and construct models directly, we will also keep track of which axioms by
Hilbert are satisfied.
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Chapter 1

Hyperbolic planes and rigid motions

Given any ordered field F (for a definition and an overview of ordered fields,
see chapter 2, in this chapter F may be thought of as R or Q), there are
multiple ways to construct a hyperbolic plane. In this chapter three such
models are presented. They are equivalent, but in some instances the use of
one might be preferred over another. In this chapter, the models as well as
their relationships will be given. Then, a group of actions on the hyperbolic
plane is identified. Later, the cross ratio, a multiplicative hyperbolic distance,
will be defined for two points on the hyperbolic plane. Showing that the
hyperbolic distance is invariant under the action, justifies calling the actions
isometries of the hyperbolic plane. The formulae in the various models are
adapted from [2].

1.1 Models of the hyperbolic plane

Given any ordered field F, the complex plane F[i] for i2 = −1 can be consid-
ered. The upper half plane model of the hyperbolic plane

HF2 = {w ∈ F[i] : Imag(w) > 0} ∼= {(u, v) ∈ F2 : v > 0}

is the set of complex numbers that have positive imaginary part. Another
model of the hyperbolic plane is the conformal or Poincaré disk model

B = {z ∈ F[i] : zz̄ < 1} ∼= {(x, y) ∈ F2 : x2 + y2 < 1}.

These models are connected by a transformation t as stated in the next propo-
sition.

Proposition 1.1 The Möbius transformation

t : HF2 −→ B

w = u + iv 7−→ w− i
w + i

=
u2 + v2 − 1

u2 + (v + 1)2 −
2u

u2 + (v + 1)2 i
(1.1)
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1. Hyperbolic planes and rigid motions

is a bijective function with inverse

t−1(z) = t−1(x + iy) = i
1 + z
1− z

=
−2y + i(1− (x2 + y2))

(1 + x)2 + y2 . (1.2)

Proof First, t needs to be a well defined function. As Imag(w) > 0, the
formula of t defines a function from HF2 to F2. One verifies that t(u + iv) =
x + iy with

x =
u2 + v2 − 1

u2 + (v + 1)2 and y = − 2u
u2 + (v + 1)2 .

For t(z) to lie in the ball B it needs to satisfy x2 + y2 < 1

x2 + y2 =
(u2 + v2 − 1)2 + 4u2

(u2 + (v + 1)2)2 =
(u2 + v2)2 − 2(u2 + v2) + 1 + 4u2

(u2 + v2 + 2v + 1)2

=
(u2 + v2)2 + 2u2 − 2v2 + 1

(u2 + v2)2 + 2(u2 + v2)(2v + 1) + (2v + 1)2 < 1

⇐⇒ (u2 + v2)2 + 2u2 − 2v2 + 1 < (u2 + v2)2 + 4u2v + 2u2 + 4v3 + 6v2 + 4v + 1

⇐⇒ 0 < 4u2v + 4v3 + 8v2 + 4v = 4v(u2 + (v + 1)2),

which is true since v > 0. Thus t is well defined.

Next, the formula of

t−1 : B −→ HF2

z 7−→ i
1 + z
1− z

defines a function to F[i] as zz̄ < 1. We show that it is a well defined function
and sends points to the upper half plane HF2 by setting z = x + iy ∈ B for
x2 + y2 < 1

t−1(z) = t−1(x + iy) =
−2y + i(1− x2 − y2)

(1− x)2 + y2

⇒ Imag
(

t−1(z)
)
=

1− (x2 + y2)

(1− x)2 + y2 >
(x2 + y2)− (x2 + y2)

(1− x)2 + y2 = 0,

which shows that t−1(z) is in the upper half plane HF2. Finally, we show
that t−1 is an both-sided inverse of t by calculating

t(t−1(z)) = t(t−1(x + iy)) = t
(

i
1 + x + iy

1− (x + iy)

)
=

i 1+x+iy
1−(x+iy) − i

i 1+x+iy
1−(x+iy) + i

=
1 + x + iy− (1− (x + iy))
1 + x + iy + 1− (x + iy)

= x + iy = z
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1.1. Models of the hyperbolic plane

(0, 0,−1)

(1, 0, 0)

w

t(w)

s(w)

(x, y, z)

Figure 1.1: The connections
between the models of the hyper-
bolic plane can be visualised in F3.
The point w ∈ HF2 is mirrored
on the third coordinate axis and
then stereographically projected
to (x, y, z) on the unit sphere.
Another stereographic projection
then sends it to t(w) ∈ B. In-
stead projecting (x, y, z) directly
downward and mirroring it on the
second coordinate axis results in
s(w) = (−x, y) ∈ B0.

This construction is also available
online as an interactive GeoGebra
visualisation at https://n.ethz.
ch/~apraphae/hyperbolic_

planes_visualisation.html.

and

t−1(t(w)) = t−1(t(u + iv)) = t−1
(

u + iv− i
u + iv + i

)
= i

1 + u+iv−i
u+iv+i

1− u+iv−i
u+iv+i

= i
u + iv + i + u + iv− i

u + iv + i− (u + iv− i)
= u + iv = w

concluding the proof. �

The transformation t extends to the boundaries of HF2 and B and sends
i,−1, 0,−1 ∈ HF2 ∪ ∂HF2 to 0, i,−1,−i ∈ B ∪ ∂B and the real axis in HF2

to the boundary of B without the point 1 ∈ B, which can be thought of
as corresponding to ’the point at infinity i∞’ in HF2. The transformation
t can be understood as a series of (stereographic) projections as visualized
in figure 1.1, where w is sent over a point on the upper half sphere as an
intermediate step. This naturally leads to another model of the hyperbolic
plane, the Klein disk model

B0 = {(x, y) ∈ F2 : ∃z ∈ F : x2 + y2 + z2 = 1}.

Note that B0 ⊂ B, but they are not the same in general, since (x, y) ∈ B is
only in B0 if

√
1− (x2 + y2) ∈ F. If it is possible to take square roots in F,
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1. Hyperbolic planes and rigid motions

then B = B0 as sets, but even then the two models behave differently, as there
is a different identification with HF2 considered in the next proposition.

Proposition 1.2 The transformation

s : HF2 −→ B0

u + iv 7−→
(

1− (u2 + v2)

1 + u2 + v2 ,
−2u

1 + u2 + v2

) (1.3)

is a bijective function with inverse

s−1 ((x, y)) =
(
−y

1 + x
,

z
1 + x

)
for z =

√
1− x2 − y2. (1.4)

Proof To see the that s is well defined, consider an element u + iv ∈ HF2

and set s(u + iv) = (x, y). For this point to be in B0 it is necessary to find a
z with the property x2 + y2 + z2 = 1. Using

z =
2v

1 + u2 + v2 ∈ F

results in

x2 + y2 + z2 =
1− 2(u2 + v2) + (u2 + v2)2 + 4u2 + 4v2

(1 + u2 + v2)2 = 1,

which proves that s is well defined. For s−1 note that z =
√

1− (x2 + y2) ∈ F
by the definition of B0 and z > 0 by the definition of square root. Now
−1 < x < 1, so 1 + x > 0 resulting in

Imag
(

s−1 ((x, y))
)
=

z
1 + x

> 0

and s−1((x, y)) ∈ HF2. To see that s−1 is the both-sided inverse of s, one can
show with the same z =

√
1− (x2 + y2) ∈ F that

s
(

s−1 ((x, y))
)
= (x, y)

and

s−1 (s(u + iv)) = u + iv

concluding the proof that s is a bijection between the two models HF2 and
B0 of the hyperbolic plane. �

When extended to the boundaries, s sends i,−1, 0, 1 ∈ HF2 ∪ ∂HF2 to
(0, 0), (0, 1), (1, 0), (0,−1) ∈ B0 ∪ ∂B0, the ’point at infinity i∞’ lands at
(−1, 0) ∈ B0. Now three models of the hyperbolic plane were presented
and naturally the question arises how to get from one of the disk models to
the other.
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1.1. Models of the hyperbolic plane

Proposition 1.3 There is a bijection between the two disk models with formulae

ts−1 : B0 −→ B

(x, y) 7−→
(
−x

1 + z
,

y
1 + z

)
for z =

√
1− (x2 + y2)

(1.5)

st−1 : B −→ B0

(x, y) 7−→
(

−2x
1 + x2 + y2 ,

2y
1 + x2 + y2

) (1.6)

Proof The bijections are obtained by going over the half plane model HF2

via t and s. Concatenations of bijections are again bijections. One can vali-
date the formulas for ts−1 and st−1 directly using formulae (1.1), (1.2), (1.4)
and (1.3) for t and s. �

Remark 1.4 These formulae show that the Poincaré and the Klein model of the
hyperbolic plane only differ by a dilation by a factor 1

1+z centered at the origin (and
a reflection on the y-axis). As a result, the limit points on the boundary of B are the
same as the ones on the boundary of B0 and are fixed points of ts−1 and st−1 (up to
the reflection x 7→ −x).

From now on it makes sense to take a look at a special class of ordered fields,
the Euclidean fields.

Definition 1.5 An ordered field F is called Euclidean if every positive element
x > 0 ∈ F is a square: ∃y ∈ F : y · y = x ∈ F. This element is then called the
square root of x (y =

√
x).

In planes over Euclidean fields the elementary continuity principle holds, mean-
ing that all circles and lines in F2 intersect when they should (when they
would intersect in the Cauchy-completion of F), since the equations for lines
and circles can be solved in those fields (compare this to the circle-circle
intersection property (E) in Appendix A). In general (non-Euclidean) fields
this is not the case. For example consider the non-Euclidean field Q. The
line that goes through the points (0, 0) and (1, 1) ∈ Q2 does not cut the unit
circle. In chapter 2 more properties of ordered fields and their relationships
as well as some examples are presented.

Using a Euclidean field F, the three models can be equipped with sets of
points called hyperbolic lines to create a neutral geometry in the sense of
Hilbert (for an overview of Hilbert’s axioms, see Appendix A). In the case
of HF2 hyperbolic lines are defined to be half circle arcs or straight vertical
rays. (In general planes F2 a line is the set of all points that satisfy a linear
equation, a circle is the set of all points that satisfy a circle equation.) When
extended to the border, the hyperbolic lines would cut the real axis at a right
angle. (Right angles are defined on general planes F2 by saying two vectors
v = (v1, v2) and w = (w1, w2) form a right angle if v · w = v1w1 + v2w2 = 0.)
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1. Hyperbolic planes and rigid motions

Figure 1.2: An artistic represen-
tation of the Poincaré disk B by
M.C. Escher. The fish of one
color follow a hyperbolic line and
all fish have the same size in the
hyperbolic metric.

All M.C. Escher works c©
2017 The M.C. Escher Company
- the Netherlands. All rights
reserved. Used by permission.
www.mcescher.com

In the Poincaré disk model B, hyperbolic lines are circle segments (as can
be seen in figure 1.2) that, when extended to the boundary, cut it at right
angles, or line segments that pass through the point 0 ∈ B. The fact that
the field F is Euclidean is used in the proof that there are intersections with
right angles. In the Klein disk model B0, hyperbolic lines are straight line
segments. figure 1.1 illustrates a hyperbolic triangle created by hyperbolic
lines in the three models.

HF2

A

B

C
B

t(A)t(B)

t(C)

B0

s(A) s(B)

s(C)
←−t −→s

Figure 1.3: The hyperbolic triangle 4ABC is limited by three hyperbolic lines. The transfor-
mations t and s identify the Poincaré disk B, the half plane HF2 and the Klein disk B0 with each
other.

It can be shown that these definitions of hyperbolic lines satisfy Hilbert’s
axioms of incidence (I1 - I3) and betweenness (B1 - B4) (as stated in Ap-
pendix A). The hyperbolic lines in the different models remain hyperbolic
lines under the identifications t and s from (1.1) and (1.3). For HF2 and
B, this is a result of the fact that t is a Möbius transformation that sends
circles or lines to circles or lines. The Klein model B0 can be understood
as a stretching of the Poincaré model B by exactly as much as is needed to
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1.2. Rigid motions

get straight lines as stated in remark 1.4. These facts are subjects of lectures
about hyperbolic geometry and not proved here.

1.2 Rigid motions

In Hilbert’s system of axioms (Appendix A) there is a third group of axioms
that are essential to geometry, the congruence axioms (C1 - C6). They re-
quire a method to compare sizes of hyperbolic line segments. One way to
introduce such a comparison would be to define a metric on the hyperbolic
plane. This metric then gives rise to a set of isometries. As the standard
definition of the hyperbolic metric for F = R involves logarithms, the gen-
eralization is not straightforward and is subject of chapter 3.1. Instead it is
possible to start with a group of isometries that also lead to the axioms of
congruence.

Definition 1.6 The group GL+(2, F) = {A ∈ F2×2 : det(A) > 0} ⊂ GL(2, F)
is the group of invertible 2× 2 matrices over F with strictly positive determinant.

Proposition 1.7 GL+(2, F) is a group and if I is the unit matrix then its multiples
F∗ = {λI ∈ GL+(2, F) : λ ∈ F} is the center group of GL+(2, F).

Proof GL+(2, F) is a subset of the general linear group. To show that it
is a subgroup it is enough to see ∀A, B ∈ GL+(2, F) : AB ∈ GL+(2, F),
which is satisfied since the product of two strictly positive determinants is
positive again and ∀A ∈ GL+(2, F) : A−1 ∈ GL+(2, F), which is true since
the reciprocal of a positive determinant is positive.

The center group of GL+(2, F) is the set of all matrices A ∈ GL+(2, F) that
commute with every other matrix B ∈ GL+(2, F). For

A =

(
a b
c d

)
∈ GL+(2, F)

to be in the center it has to commute with all matrices such as

B =

(
1 1
0 1

)
and BT =

(
1 0
1 1

)
giving raise to the restrictions(

a a + b
c c + d

)
= AB = BA =

(
a + c b + d

c d

)
⇒ c = 0 and a = d(

a + b b
c + d d

)
= ABT = BT A =

(
a b

a + c b + d

)
⇒ b = 0 and a = d.

The matrices of the form aI already commute with every other matrix, so F∗

is the center group. �
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1. Hyperbolic planes and rigid motions

Proposition 1.8 The group PGL+(2, F) = GL+(2, F)/F∗ acts non-trivially and
transitively on HF2 by (

a b
c d

)
w =

aw + b
cw + d

, w ∈ HF2. (1.7)

Proof The action is well defined on the whole F2. The action sends elements
w = u + iv ∈ HF2 with v > 0 to points with imaginary part

Imag(Aw) = Imag
((

a b
c d

)
w
)
= Imag

(
aw + b
cw + d

)
=

det(A)v
(cu + d)2 + c2v2 > 0,

which are again in HF2. To be a group action, it also satsifies identity λIw =
w and compatibility(

a b
c d

) [(
a′ b′

c′ d′

)
w
]
=

[(
a b
c d

)(
a′ b′

c′ d′

)]
w.

The elements of GL+(2, F) that act trivially on HF2 form exactly the center
group F∗, which got condensed into the neutral element in PGL+(2, F), so
PGL+(2, F) acts non-trivially. The action is also transitive since there is a
matrix AB−1 ∈ GL+(2, F) that sends any point u + vi ∈ HF2 over i to any
other point u′ + v′i ∈ HF2 as follows

B =

(
u v
0 1

)
, A =

(
u′ v′

0 0

)
AB−1(u + iv) =

(
u′ v′

0 1

)(
u v
0 1

)−1

w =

(
u′ v′

0 1

)
i = u′ + v′i. �

Via the identifications t (1.1) and s (1.3), PGL+(2, F) acts on all models of
the hyperbolic plane. These actions are the rigid motions on the hyperbolic
plane. They adopt the role of orientation preserving isometries similar to
the rotations and translations in the usual Euclidean plane. In fact there is
also a subgroup of rotations in PGL+(2, F) that is further analyzed in the
various models by [2]. Two hyperbolic line segments (or hyperbolic angles)
then are said to be congruent if there is an element in PGL+(2, F) that sends
one onto the other. For F Euclidean, it can be proven (see for example [5])
that this notion of congruence satisfies the axioms of congruence (C1 - C6)
for line segments (or angles) as stated in Appendix A.

1.3 The cross ratio

In this section, the multiplicative hyperbolic distance (cross ratio) between
two points of the hyperbolic plane over a Euclidean field F is introduced.
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1.3. The cross ratio

This is a way of assigning a number in F to measure the size of a hyperbolic
line segment or the hyperbolic distance between two points in the hyperbolic
plane. This is however not an additivie distance yet.

Definition 1.9 Two points A and B in the Poincaré model B define a hyperbolic
line with two ideal end points P and Q on the boundary ∂B as in figure 1.4. The
cross ratio of A and B is defined to be

D(A, B) =
|AQ||BP|
|AP||BQ| , (1.8)

where the notation |z1z2| = ‖z1 − z2‖ with the F-valued norm on F[i]

‖u + iv‖ =
√

u2 + v2 ∈ F.

for the Euclidean distance between two points z1, z2 ∈ F[i] is used.

Proposition 1.10 The cross ratio D on the Poincaré model B is PGL+(2, F) in-
variant.

Proof First we show that cross ratios, such as the one in (1.8), are invariant
under general Möbius transformations

T : F[i] −→ F[i]

z 7−→ az + b
cz + d

for a, b, c, d ∈ F[i], d 6= 0

by using the fact that

T(z1)− T(z2) =
az1 + b
cz1 + d

− az2 + b
cz2 + d

=
(ad− bc)(z1 − z2)

(cz1 + d)(cz2 + d)

to get

|T(A)T(Q)| · |T(B)T(P)|
|T(A)T(P)| · |T(B)T(Q)| =

|AQ| · |BP|
|AP| · |BQ| .

Next, we show that the action of PGL+(2, F) on B is a Möbius transform.
The action of PGL+(2, F) on B is defined via the identifications (1.1) and
(1.2) and the action (1.7) on HF2.

PGL+(2, F)× B −→ PGL+(2, F)× HF2 −→ HF2 −→ B((
a b
c d

)
, z
)
7−→

((
a b
c d

)
, t−1(z)

)
7→ t−1(z′) 7→ z′

The resulting formula

z′ = t
((

a b
c d

)
t−1(z)

)
= t

((
a b
c d

)
i
1 + z
1− z

)
=

(c− b + i(a + d))z + (b + c + i(a− d))
(−(b + c) + i(a− d))z + (b− c + i(a + d))

11



1. Hyperbolic planes and rigid motions

B ∼= B0

O

A

A′

B B′

P

Q

M

Figure 1.4: The hyperbolic line
through A and B in the Poincaré
disk model ends in the same points
P and Q as the corresponding
hyperbolic line through A′ =
st−1(A) and B′ = st−1(B) in the
Klein model B0. The hyperbolic
line in the Poincaré model is a Eu-
clidean circle segment, while the
hyperbolic line in the Klein model
is a Euclidean line segment. The
points P, Q, M are also used to ver-
ify the formulae for the cross ra-
tio in proposition 1.11. (Note that
one of the models has been mir-
rored as stated in remark 1.4.)

is indeed a Möbius transformation (note that ad − bc > 0 implies b − c +
i(a+ d) 6= 0). This implies that the cross ratio (1.8) is PGL+(2, F)-invariant.�

The other models of the hyperbolic plane inherit this cross ratio and the
next propositions give some explicit formulae in other models. In the proof
of these, the property that PGL+(2, F) acts transitively on points of the hy-
perbolic plane (proposition 1.8) can sometimes be used. Namely, the point
A can be sent to 0 ∈ B and B can be taken to lie somewhere on the first
coordinate axis. In the Klein disk model B0, the formula looks very similar,
only a square root has to be added.

Proposition 1.11 Let A′, B′ ∈ B0 be two points that correspond to the points
A, B ∈ B and let P, Q ∈ ∂B be the endpoints of the hyperbolic line as shown in
figure 1.4. Then the cross ratio is

D(A′, B′) =

√
|A′Q||B′P|
|A′P||B′Q| (1.9)

in the Klein model B0 of the hyperbolic plane.

Proof The cross ratio consists of two ratios, and their correspondence

|AQ|
|AP| =

√
|A′Q|
|A′P| and

|BP|
|BQ| =

√
|B′P|
|B′Q|

can be shown individually using formulas 1.6 and 1.5 for st−1 and ts−1 and
trigonometric considerations. To calculate the first ratio introduce the point

12



1.3. The cross ratio

M, the middle point of P and Q as in figure 1.4 and the Euclidean distances

s = ‖P−M‖ = ‖Q−M‖ , c = ‖O−M‖ , t =
∥∥A′ −M

∥∥
with the properties

s2 + c2 = 1,
∥∥Q− A′

∥∥ = s + t,
∥∥A′ − P

∥∥ = s− t

hence their naming s for sine and c for cosine (the distances s and t used
in this proof should not be confused with the identifications between the
models). Using the formula (1.5)

A = ts−1(A′) = A′
1

1 + z
for z =

√
1− ‖A′‖ =

√
1− c2 − t2

results in a distance of t 1
1+z from the OM-axis and a distance c 1

1+z from O
aligned with the OM-axis for A, wich leads to the distances

|AQ| =

√(
c− c

1
1 + z

)2

+

(
s + t

1
1 + z

)2

and

|AP| =

√(
c− c

1
1 + z

)2

+

(
s− t

1
1 + z

)2

with Pythagoras’ theorem. The calculation

|AQ|
|AP| =

√
c2
(
1− 1

1+z

)2
+
(
s + t 1

1+z

)2√
c2
(
1− 1

1+z

)2
+
(
s− t 1

1+z

)2

=

√
c2z2 + (s(1 + z) + t)2

c2z2 + (s(1 + z)− t)2

=

√
1− c2 − t2 + 2s2z + s2 + 2st + 2stz + t2

1− c2 − t2 + 2s2z + s2 − 2st− 2stz + t2

=

√
s2 + c2 − c2 + 2s2z + s2 + 2st + 2stz
s2 + c2 − c2 + 2s2z + s2 − 2st− 2stz

=

√
2s(s + sz + t + tz)
2s(s + sz− t− tz)

=

√
s + t
s− t

=

√
|A′Q|
|A′P|

for A can also be done for B proving that

D(A, B) =
|AQ||BP|
|AP||BQ| =

√
|A′Q||B′P|
|A′P||B′Q|

is indeed a formula for the cross ratio in the Klein model B0. �
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1. Hyperbolic planes and rigid motions

There is a formula for the cross ratio in the upper half plane model HF2. To
prove it, we make use of the PGL+(2, F) invariance.

Proposition 1.12 Let A, B be two points in the Poincaré disk model with their
corresponding points z1 = t−1(A), z2 = t−1(B) in the half plane model HF2. The
formula

D(A, B) =
1 + t
1− t

for t(z1, z2) =

∥∥∥∥ z1 − z2

z1 − z2

∥∥∥∥ (1.10)

for the cross ratio holds.

Proof First we show that this formula 1.10 is also invariant under PGL+(2, F)
by showing a stronger result, namely that it is GL(2, F)-invariant. Use the
fact that GL(2, F) is generated by matrices of the form

u(x) =
(

1 x
0 1

)
for x ∈ F

δ(λ1, λ2) =

(
λ1 0
0 λ2

)
for λ1, λ2 ∈ F \ {0}

ω =

(
0 1
1 0

)
.

as can be seen by the decompositions(
0 b
c d

)
= ω · δ (c, b) · u

(
b
c

)
, if a = 0,

(
as det

(
a b
c d

)
6= 0⇒ c 6= 0

)
(

a b
c d

)
= ω · u

( c
a

)
·ω · δ (a, d− abc) · u

(
b
a

)
, if a 6= 0.

Since the number t(z1, z2) ∈ F is invariant under those matrices

t(u(x)z1, u(x)z2) =

∥∥∥∥ z1 + x− (z2 + x)
z1 + x− (z2 + x)

∥∥∥∥ = t(z1, z2)

t (δ(λ1, λ2)z1, δ(λ1, λ2)z1) =

∥∥∥∥∥
λ1
λ2

z1 − λ1
λ2

z2
λ1
λ2

z1 − λ1
λ2

z2

∥∥∥∥∥ = t(z1, z2)

t(ωz1, ωz2) =

∥∥∥∥∥
1
z1
− 1

z2
1
z1
− 1

z2

∥∥∥∥∥ = t(z1, z2),

it is invariant under all matrices in GL+(2, F) ⊂ GL(2, F). Through the
projection GL+(2, F)� PGL+(2, F) = GL+(2, F)/F∗ this property is kept.

Together with the invariance of the cross ratio (proposition 1.10) this implies
that we can assume without loss of generality that A = 0 and B = x on the
positive part of the first coordinate axis. We use equation 1.2 for t−1 to get

z1 = t−1(A) = i z2 = t−1(B) = i
1 + x
1− x

14



1.3. The cross ratio

and

t(z1, z2) =

∥∥∥∥ z1 − z2

z1 − z2

∥∥∥∥ = x.

This proves the proposition with

D(A, B) =
|AQ||BP|
|AP||BQ| =

1 + x
1− x

=
1 + t
1− t

. �

The formula of the cross ratio on HF2 implies one more form on B itself.

Proposition 1.13 Given two points z1, z2 ∈ HF2 with cross ratio D(z1, z2) that
are sent to z′1 = t(z1), z′2 = t(z2) ∈ B, the cross ratio can be calculated in B as

D(z′1, z′2) =
1 + t′(z′1, z′2)
1− t′(z′1, z′2)

for t′(z′1, z′2) =

∥∥∥∥∥ z′1 − z′2
1− z′1z′2

∥∥∥∥∥ . (1.11)

Proof The points are related via t−1 from (1.2) as

z1 = i
1 + z′1
1− z′1

, z2 = i
1 + z′2
1− z′2

∈ HF2

and inserting z1 and z2 into the t from the HF2-formulation of the cross ratio
(1.10) in HF2 gives the same value

t(z1, z2) =

∥∥∥∥∥∥∥
i 1+z′1

1−z′1
− i 1+z′2

1−z′2

−i 1+z′1
1−z′1
− i 1+z′2

1−z′2

∥∥∥∥∥∥∥ =

∥∥∥∥∥ z′1 − z′2
1− z′1z′2

∥∥∥∥∥ = t′(z′1, z′2)

as the t′ of the formula of the cross ratio in B. This proves that we found
another formula for the cross ratio on B. �

The following properties of D, together with the PGL+(2, F)-invariance, jus-
tify the name multiplicative distance for the cross ratio.

Proposition 1.14 Given three points A, B, C in the hyperbolic plane, the cross ratio
satisfies the following two properties:

D(A, B) > 1, with D(A, B) = 1 ⇐⇒ A = B (1.12)

D(A, B)D(B, C) > D(A, C), with equality if and only if A, B, C
lie on a hyperbolic line in that order.

(1.13)

15



1. Hyperbolic planes and rigid motions

B0

B
A

C

PQ

R

U

S

T

Figure 1.5: Three points A, B, C with
their ends P, Q, R, S, U, T on the bound-
ary of B0 to illustrate the proof of (1.13)
D(A, B)D(B, C) > D(A, C).

Proof Use the formula 1.9 of the Klein model B0

D(A, B) =

√
|AQ||BP|
|AP||BQ|

with

|BP| > |AP| and |AQ| > |BQ|

to see that

D(A, B) >
√

1 = 1.

If A = B⇒ |BP| = |AP| and |AQ| = |BQ| ⇒ D(A, B) = 1.
If A 6= B⇒ |BP| > |AP| and |AQ| > |BQ| ⇒ D(A, B) > 1.

For the proof of (1.13), without loss of generality let B = 0 and A on the
positive side of the first coordinate axis. Let QBAP, RBCS and UCAT be
three hyperbolic lines as in figure 1.5. Note that the properties

|BQ| = |BR| = |BS| = |BP| = 1
|AT| > |AP|, |CU| > |CS|
|AQ| > |AU|, |CR| > |CT|

(1.14)

hold. Then

(D(A, B)D(B, C))2 =
|BP||AQ|
|AP||BQ| ·

|CR||BS|
|BR||CS| =

|AQ||CR|
|AP||CS| >

|CT||AU|
|AT||CU| = D(A, C)2

shows that D(A, B)D(B, C) > D(A, C).
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1.3. The cross ratio

If A, B, C lie on a line in that order, then P = R = T and Q = S = U and

D(A, B)D(B, C) =

√
|BP||AQ|
|AP||BQ|

|CP||BQ|
|BP||CQ| =

√
|AQ||CP|
|AP||CQ| = D(A, C).

If A, B, C are not collinear, then all the inequalities in (1.14) are strict inequal-
ities. Therefore D(A, B)D(B, C) > D(A, C). �
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Chapter 2

Fields

2.1 Ordered fields

The construction of models of the hyperbolic plane in chapter 1 was done for
general ordered fields. For the fulfilling of the various axioms of a neutral
geometry, F was restricted to be a Euclidean field. This chapter will give an
overview over many more properties that fields can have.

Definition 2.1 [5] A field F with a subset P ⊂ F, whose elements are called posi-
tive elements, is called an ordered field if it satisfies the following two conditions:

(a) If a, b ∈ P then a + b ∈ P and ab ∈ P.

(b) For any a ∈ F, exactly one of the following holds: a ∈ P, a = 0, −a ∈ P.

First, to be able to do geometry based on Hilberts axioms (Appendix A), it is
advisable to work with ordered fields. In fact, proposition 15.3 in [5] states
that if the plane F2 satisfies the axioms of betweenness (B1 - B4), then F must
be an ordered field. The idea is that ordered fields provide a natural order
for points on lines such as the coordinate axis F ∼= F× {0} ⊂ F2 satisfiying
Hilberts axioms of betweenness. This is is already a considerable limitation
on fields F.

Proposition 2.2 An ordered field is infinite.

Proof If −1 were in P, then (−1)(−1) = 1 ∈ P, which contradicts condition
(a) in the definition of odered fields 2.1. As 0 6= 1 it follows that 1 ∈ P.
The sum of two positive elements such as 1+ 1, 1+ 1+ 1, ... is positive again.
They can be written as elements in N by setting n = 1 + ... + 1 (n times). To
see that they are all distinct, assume by contradiction that n = m ∈ N (and
without loss of generality, there are less summands in n than there are in
m). Then 0 = m− n = 1 + ... + 1 (m− n times) is supposed to be a positive
number, which is a contradiction. So this list contains an infinite amount of
elements in F. �
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2. Fields

Corollary 2.3 Every ordered field contains a subring that is isomorphic to N and
a subfield that is isomorphic to Q.

Proof In the previous proof a list of numbers (1, 1 + 1, 1 + 1 + 1, ...) was
constructed that is isomorphic to N. Since F is a field, the elements of Q can
be constructed from the ones from N. �

The condition for F to be an ordered field thereby removes the possibility
of F to be a finite field. Also some other fields such as C and (even non-
Archimedean ones such as) the p-adic numbers are excluded by this prop-
erty (for example we have |p|p = p but |p + 1|p = 1 and |2p + 1|p = 1 <
|p|p + |p + 1|p = 3, which contradicts the triangle inequality that follows for
absolute values from the definition of ordered fields).

2.2 Real closed fields, Archimedean fields, examples

To make sure that two hyperbolic lines meet where they should, the field
F was further restricted to be Euclidean (square roots exist) in chapter 1.
However there is another property that leads to similar results.

Definition 2.4 An ordered field F is said to be real closed if every positive element
of F has a square root in F and every polynomial of odd degree with coefficients in
F has at least one root in F.

With this property, real closed fields are even more like the real numbers R.
An example for an ordered field that is neither Euclidean nor real closed is
Q. The field of constructible numbers (numbers that can be represented by a fi-
nite amount of additions, subtractions, multiplications, divisions and square
roots) corresponds to the numbers that can be constructed with a straight-
edge and a compass. The field of constructible numbers is Euclidean but not
real closed as there is no solution to X3 = 2. Examples for real closed fields
are the real algebraic numbers (the real solutions of rational polynomials) or
just R.

Definition 2.5 An ordered field F is said to be an Archimedean field if for all
elements a ∈ F there is a natural number (using the embedding of N from corollary
2.3) n ∈ F with n > a.
Otherwise it is called non-Archimedean.

All the previous examples are Archimedean fields. All of them are subfields
of R, in fact:

Theorem 2.6 (Hölder, 1901)
Every ordered Archimedean field is isomorphic to a subfield of R.

Proof A proof can be found in [9]. �
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2.2. Real closed fields, Archimedean fields, examples

Next, some examples of non-Archimedean fields shall be given. First, let
Q(X) be the field of rational functions of the form p(x)/q(x) for two polyi-
nomials p and q 6= 0 with coefficients in Q. The rational numbers Q are
viewed as the subfield of constant polynomials. There are multiple possi-
ble orders on this field of functions. For instance, it is possible to look at
small positive regions (germs) of functions. An element then is said to be
positive if there is ε > 0 such that the function is strictly positive on the
open interval (0, ε) ⊂ Q. This is possible, since elements in Q(X) are piece-
wise continuous (with only finitely many poles and zeroes). Note that this
satisfies definition 2.1 and thus is an ordered field. With this definition, the
function X−1 ∈ Q(X) is greater than any constant function (such as the natu-
ral numbers) since it tends to infinity when approaching 0 from above. This
makes the field Q(X) a non-Archimedean field. It is not Euclidean (nor real
closed) as it faces the same problem as Q (

√
2 /∈ Q). But also the field of

real rational functions R(X) is not Euclidean since X ∈ R(X) does not have
a square root.

To give an example of a non-Archimedean ordered field that is Euclidean
(and even real closed), introduce the Levi-Civita field that can be constructed
as the set of formal series of the form

∑
i∈Q

aiXi,

where ai ∈ R, with the restriction that the support {i ∈ Q : ai 6= 0} has to be
leftfinite, i.e. for every index there is only a finite amount of other indices
that are smaller than it. The multiplication

∑
i∈Q

aiXi · ∑
j∈Q

bjX j = ∑
i+j∈Q

aibjXi+j

is then well defined since for every index e ∈ Q, there are only finitely many
pairs (i, j) with i + j = e (otherwise there would be an infinite decreasing
sequence of i’s or j’s). The Levi-Civita field can be proven to be real closed
and it is even the smallest non-Archimedean, Cauchy-complete and real
closed extension of R [10]. A similar field is the set of Hahn-series, where the
condition to be leftfinite is replaced with well-ordered, i.e. every subset of
the support has to have a smallest element. This field was first constructed
by Hahn to prove a result, similar to Hölders theorem 2.6, a classification
theorem for general (possibly non-Archimedean) fields.

Theorem 2.7 (Hahn embedding theorem, Hahn 1907)
An ordered field F is isomorphic to a subring of

RF/∼, where f ∼ g ⇔ ∃n, m ∈N : n| f | > |g| and m|g| > | f |

with lexicographical ordering.
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2. Fields

Proof A proof can be found in [9]. �

For example, the Archimedean equivalence classes in the field of rational
functions R(X) are the ones that start with ..., X−1, 1, X, X2, ... and so R(Z)/∼
= Z. Thus, the Hahn embedding theorem shows that R(X) has to be a sub-
ring of RZ ∼= {(ai)i∈Z : ai ∈ R} with the lexicographic ordering.

Another ordered field is the set of hyperreal numbers Rω, which form the ba-
sis for non-standard analysis. The hyperreal numbers can be constructed as
equivalence classes of series of real numbers. The equivalence relation de-
pends on the notion of a non-principal ultrafilter ω : P(Z)→ {0, 1} satisfying

ω(∅) = 0

ω(Z) = 1

∀A, B ⊂ Z : A ∩ B = ∅⇒ ω(A ∪ B) = ω(A) + ω(B)

and to make it non-principal

∀A ⊂ Z : |A| < ∞ : ω(A) = 0.

Note that ultrafilters are similar to measures with only values in {0, 1},
but only finite additivity is required (instead of σ-additivity). One way
to construct ultrafilters, is to pick a number n ∈ Z and then we say that
ω(A) = 1 ⇐⇒ n ∈ A ⊂ Z. This is an ultrafilter, but it is not non-
principal since ω({n}) = 1. To create a non-principal ultrafilter, one might
be tempted to define ω(A) = 1 ⇐⇒ |A| = ∞, but then there are disjoint
sets A, B ⊂ Z, both infinite, (for example the even and odd numbers) that
would lead to ω(A ∪ B) = 2. No concrete constructions of non-principal
ultrafilters are known, but the existence of ultrafilters with this property
can be proven via the ultrafilter lemma that uses Zorn’s lemma [4]. For a
given non-principal ultrafilter ω, the hyperreal numbers are then defined
to be equivalence classes of infinite sequences Rω = RN/ ∼, where the
equivalence is given by

(xi)i∈Z = x ∼ y = (yi)i∈Z if ω{i ∈ Z : xi 6= yi} = 0
or ω{i ∈ Z : xi = yi} = 1.

This gives rise to the 0 element

[0] =
{

x ∈ RZ : ω{i ∈ Z : xi = 0} = 1
}
∈ Rω

and all the other elements satisfy ω{i ∈ Z : xi = 0} = 0. For 0 6= x = (xi)i∈Z,
define y by

yi =

{
xi, if xi 6= 0
1, if xi = 0

for all i ∈ Z
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2.3. Microbial fields

and note that x ∼ y. This then allows to define the multiplicative inverse
(componentwise), turning Rω into a field. There are many more ordered
non-Archimedean fields that could be cited here. For example the surreal
numbers, see [3] and [6], are particularly interesting since they are in some
sense the largest ordered fields.

2.3 Microbial fields

To conclude this chapter, one more property of fields is explored. This prop-
erty will become important for the definition of a logarithm in the next
chapter.

Definition 2.8 A positive element b > 0 of an ordered field F is called a big
element if

∀ f ∈ F ∃n ∈N : bn > f

and the reciprocial of a big element is called a microbe. An ordered field F is called
a microbial field, if it contains a big element (or a microbe).

In Q or R, every number that is bigger than 1 is a big element. Numbers be-
tween 0 and 1 are microbes. Together with Hölder’s theorem 2.6 this implies
that all Archimedean fields are microbial fields. In the non-Archimedean
case, the embedded rational numbers are never big elements. Some non-
Archimedean fields, like the field of rational functions or the Levi-Civita
field have a big element X−1 and thus are microbial fields. Other fields like
the hyperreals don’t have a big element. Any finite power of the element
x = (xi)i∈Z ∈ Rω is still smaller than the element x′ = (xi

i)i∈Z ∈ Rω. So, the
hyperreals do not form a microbial field. Given a microbial field, more mi-
crobial fields can be constructed by field extensions of finite transcendence
degree.

Theorem 2.9 Let F ⊂ K be a field extension with finite transcendence degree,
where F is a microbial field and K is an ordered field. Then K is also a microbial
field.

Proof [2]
If K is Archimedean over F (∀k ∈ K ∃ f ∈ F : 1

f < k < f ), then a big element
in F (b ∈ F : ∀ f ∈ F ∃n ∈ N : bn > f ) is also big in K. If however K
is not Archimedean over F, then there is a positive element b ∈ K that is
bigger than any element in F. This b ∈ K is transcendent over F, so the field
F(b) can be constructed with b as the big element to get a microbial field.
F(b) ⊂ K is a new microbial field with lower transcendence degree over K.
So the claim follows by induction. �
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2. Fields

This proof shows that function spaces with finitely many generating vari-
ables over microbial fields, such as a Levi-Civita field analogue with more
than one variable, are again microbial fields. As Rω is not a microbial field,
it also follows that it has infinite transcendence degree over R.
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Chapter 3

The hyperbolic distance

3.1 Logarithms

This section assumes F to be a microbial field, such as R, R(X) or the Levi-
Civita field, with a big element b ∈ F. The goal is to introduce a real valued
logarithm with base b as was done in [1] and [2]. Recall the definition of the
real numbers R as the set of all Dedekind cuts of Q.

Definition 3.1 A Dedekind cut of Q is a pair of non-empty sets A, B ⊂ Q such
that

A ∪ B = Q and

∀p ∈ A, q ∈ B : p ≤ q.

Given a number a > 0 ∈ F, the sets

A =
{m

n
∈ Q : bm ≤ an

}
, B =

{m
n
∈ Q : an ≤ bm

}
(3.1)

satisfy the definition for a Dedekind cut (since F is a microbial field, A and
B are non-empty). This way, they also define a real number that is called
the real valued logarithm of a, logb(a) and has the property that ∀p ∈ A, q ∈
B : p ≤ logb(a) ≤ q. It is necessary to work with Dedekind cuts, because
rational powers such as b

m
n might not exist in the field F. The logarithm has

the following basic properties.

Proposition 3.2 For 0 < a1 ≤ a2, a ∈ F and big elements b, b1, b2 ∈ F, the
following characteristic properties of logarithms hold:

logb(a1a2) = logb(a1) + logb(a2) (3.2)
logb(a1) ≤ logb(a2) (3.3)
logb2

(a) = logb2
(b1) logb1

(a) (3.4)
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3. The hyperbolic distance

Proof The Dedekind cuts of logb(a1) and logb(a2)

A1 =
{m1

n
∈ Q : bm1 ≤ an

1

}
B1 =

{m1

n
∈ Q : an

1 ≤ bm1
}

A2 =
{m2

n
∈ Q : bm2 ≤ an

2

}
B2 =

{m2

n
∈ Q : an

2 ≤ bm2
}

can be added to get

A1 + A2 =
{m1

n
+

m2

n
∈ Q : bm1 ≤ an

1 and bm2 ≤ an
2

}
,

B1 + B2 =
{m1

n
+

m2

n
∈ Q : an

1 ≤ bm1 and an
2 ≤ bm2

}
.

Elements p ∈ A1 + A2 satisfy

p =
m1 + m2

n
for bm1 ≤ an

1 and bm2 ≤ an
2 for some m1, m2, n ∈ Z

⇒ bm1 bm2 ≤ an
1 an

2 ⇒ bm1+m2 ≤ (a1a2)
n

and the elements q ∈ B1 + B2 similarly satisfy

q =
m1 + m2

n
for (a1a2)

n ≤ bm1+m2 for some m1, m2, n ∈ Z.

Therefore A1 + A2, B1 + B2 are the Dedekind cut of the form (3.1) that defines
logb(a1a2), proving (3.2).

If a1 ≤ a2, then also an
1 ≤ an

2 for n ∈N and

A1 =
{m

n
∈ Q : bm ≤ an

1

}
⊂
{m

n
∈ Q : bm ≤ an

2

}
= A2 for m ∈ Z and n ∈N

shows that logb(a1) ≤ logb(a2) has to hold (∀a ∈ A2 : a ≤ logb(a2)) proving
(3.3). Note here that logb(a1) = logb(a2) does not imply a1 = a2.

For i ∈ {1, 2}, let

Abia =
{mi

n
∈ Q : bmi

i ≤ an
}

, Bbia =
{mi

n
∈ Q : an ≤ bmi

i

}
and

Ab2b1 =

{
m2

m1
∈ Q : bm2

2 ≤ b1
m1

}
, Bb2b1 =

{
m2

m1
∈ Q : b1

m1 ≤ bm2
2

}
denote the Dedekind cuts for logbi

(a) and logb2
(b1). Then for elements p ∈

Ab2b1 · Ab1a, q ∈ Bb2b1 · Bb1a

p =
m2

m1

m1

n
for bm2

2 ≤ bm1
1 ≤ an,

q =
m2

m1

m1

n
for an ≤ bm1

1 ≤ bm2
2

shows that equation (3.4) is indeed true, concluding the proof of the propo-
sition. �
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3.1. Logarithms

In Archimedean fields F ⊂ R this is the usual logarithm. For non-Archimedean
microbial fields F the logarithm behaves in some surprising ways.

Proposition 3.3 Let F be a non-Archimedean ordered field with big element b and
r > 0 ∈ Q ⊂ F (in the sense of corollary 2.3). Then

logb(r) = 0. (3.5)

Proof F is non-Archimedean, so ∃a ∈ F : ∀n ∈ N : a > n (definition 2.5).
The big element b satisfies (by definition 2.8) ∀ f ∈ F : ∃n ∈ N : bn > f , in
particular this holds for f = a, so ∃n ∈ N : bn > a and a is larger than any
natural number. The big element b also does not satisfy the Archimedean
property since if there were a natural number m > b, then mn > bn > a,
which is impossible. Since rn is a rational number that can be rounded to a
natural number,

1
b
≤ rn ≤ b

holds for all n ∈N . Assuming that r ≥ 1, the Dedekind cut of logb(r) is

A =
{m

n
∈ Q : bm ≤ rn

}
= (−∞, 0],

B =
{m

n
∈ Q : rn ≤ bm

}
=

⋃
n∈N

[ 1
n , ∞) = (0, ∞),

so logb(r) = 0. In the other case 0 < r ≤ 1, the Dedekind cut

A =
{m

n
∈ Q : bm ≤ rn

}
=

⋃
n∈N

(−∞, −1
n ] = (−∞, 0),

B =
{m

n
∈ Q : rn ≤ bm

}
= [0, ∞),

looks similar and results in the same

logb(r) = 0. �

Proposition 3.4 Let a, a′ in a non-Archimedean field F with big element b ∈ F.
Then

logb(|a + a′|) ≤ max
{

logb(|a|), logb(|a
′|)
}

, (3.6)

where the convention that logb(0) = −∞ is introduced.

Proof The triangle inequality implies |a + a′| ≤ |a|+ |a′| ≤ 2 max{|a|, |a′|}.
If both sides are strictly positive, take the logarithm with (3.3) from proposi-
tion 3.2 to get

logb(|a + a′|) ≤ logb
(
2 max

{
|a|, |a′|

})
.
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3. The hyperbolic distance

We use equations (3.2) and (3.3) again to get

logb(|a + a′|) ≤ logb(2) + max
{

logb (|a|) , logb
(
|a′|
)}

.

The previous proposition 3.3 implies logb(2) = 0 concluding the proof. �

Remark 3.5 The properties (3.2) and (3.6) exactly imply that vb : F → R with
vb(a) = − logb(|a|) is a valuation with value group Λ = vb(F+) ⊂ R.

To conclude, some concrete calculations in the Levi-Civita field F are given.
Take the big element b = X−1 ∈ F as the base for the logarithm. Then

logX−1(X) = −1 and logX−1(X−m) = m,

because
(
X−1)m ≤ (X−m)1 ≤

(
X−1)m. More generally, for r > 0 ∈ Q, a ∈ F,

propositions 3.2 and 3.3 can be used to show

logb(ra) = logb(r) + logb(a) = logb(a)

and since logb(a) + logb(a−1) = logb(aa−1) = logb(1) = 0,

logb(a−1) = − logb(a). (3.7)

Using max{a, a′} ≤ a + a′ ≤ 2 max{a, a′} for positive a, a′ > 0 ∈ F, we
calculate

max
{

logb (a) , logb
(
a′
)}

= logb
(
max{a, a′}

)
≤ logb(a + a′)

≤ logb
(
2 max{a, a′}

)
= logb

(
max{a, a′}

)
⇒ logb(a + a′) = max

{
logb (a) , logb

(
a′
)}

. (3.8)

This allows fast calculations such as

logX−1

(
5X3 + 2 + 4X−1

)
= max

{
logX−1(X3), logX−1(2), logX−1(X−1)

}
= max{−3, 0, 1} = 1.

3.2 The hyperbolic metric

Using the cross ratio (multiplicative hyperbolic metric) from chapter 1.3, an
additive metric can be constructed. Usually (in the Archimedean setting) the
logarithm of the cross ratio is a metric on the hyperbolic plane. The goal of
the introduction of a logarithm for general microbial fields in chapter 3.1 was
to imitate the construction of the metric in the non-Archimedean case. For
this chapter, let F be a Euclidean microbial field that is non-Archimedean.
The case where F could be non-Euclidean is studied in [2]. We choose a big
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3.2. The hyperbolic metric

element in F and denote the logarithm by log = logb : F+ → Λ ⊂ R. As
seen in (3.4), the choice of the big element only changes the logarithm by a
constant factor, which is unimportant in what follows.

In Euclidean fields F, the cross ratio D(P, Q) of two points P, Q ∈ HF2 is
itself a number in F (as the definition of the cross ratio only contains square
roots). By (1.12), D ≥ 1 holds, in particular the cross ratio is positive. This
allows the definitoin of

d : HF2 × HF2 −→ Λ ⊂ R

(P, Q) 7−→ log (D (P, Q)) .
(3.9)

Proposition 3.6 The logarithm of the distance function D satisfies the definition
of a pseudo-metric on HF2. That is, for all points P, Q, R ∈ HF2

d(P, Q) ≥ 0, (3.10)
d(P, Q) = d(Q, P), (3.11)
d(P, R) ≤ d(P, Q) + d(Q, R) (3.12)

hold.

Proof The proof relies on the properties of D from proposition 1.14 and the
properties of log from propositon 3.2. Combining (1.12) and (3.3) with the
fact that 1 is a rational number in proposition 3.3

d(P, Q) = log(D(P, Q)) ≥ log(1) = 0

shows the positiveness (3.10). Note that d cannot be positve definite, since
there can be many points P, Q ∈ HF2 with a rational cross ratio. The sym-
metry (3.11) follows from the symmetry of the cross ratio that can be seen
in any of its definitions. Lastly, combining (1.13) with (3.3) and (3.2)

d(P, R) = log (D (P, R)) ≤ log (D (P, Q) D (Q, R))
= log (D (P, Q)) + log (D (Q, R)) = d (P, Q) + d (Q, R)

allows us to proove the triangle inequality (3.12). �

Proposition 3.7 For P, Q ∈ HF2,

P ∼ Q ⇔ d(P, Q) = 0.

defines an equivalence relation on HF2.

Proof Let P, Q, R ∈ HF2. Property (1.12) implies

d(P, P) = log(D(P, P)) = log(1) = 0.
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3. The hyperbolic distance

The symmetry of the relation follows from the symmetry of d. If d(P, Q) = 0
and d(Q, R) = 0, then

d(P, R) ≤ d(P, Q) + d(Q, R) = 0

by the triangle inequality and positiveness of d. �

Using this equivalence relation, we define the set of equivalence classes
TF2 = HF2/∼. The previous propositions show that d : TF2 × TF2 →
Λ ⊂ R is a metric on TF2. Since D is PGL+(2, F)-invariant by proposition
1.10, d is invariant too. So PGL+(2, F) acts on TF2 as a group of d-isometries.
In the next chapter, some properties of this metric space are explored. For
now, some concrete formulae for d in the various models of the hyperbolic
plane shall be given.

Proposition 3.8 Let z = x + iy, z′ = x′ + iy′ ∈ HF2. Then

d(z, z′) = log
(
(x− x′)2 + y2 + y′2

yy′

)
= max

{
log
(
(x− x′)2

yy′

)
, log

(
y
y′

)
, log

(
y′

y

)}
= log

(
‖z̄− z′‖2

yy′

)
= max

{
0, log

(
‖z− z′‖2

yy′

)}
.

Proof We use definition 1.9 of the cross ratio in HF2 and the basic properties
3.2 of the logarithm, to show that

d(z, z′) = log
(

1 + t
1− t

)
= log

(
(1 + t)2

1− t2

)
= 2 log (1 + t) + log

(
1

1− t2

)

for

t =
‖z− z′‖
‖z̄− z′‖ .

Since z and z′ lie on the upper halfplane, and z̄ is the mirror image of z
along the real axis, ‖z− z′‖< ‖z̄− z′‖ therefore

0 ≤ t =
‖z− z′‖
‖z̄− z′‖ ≤ 1 and 1 ≤ 1 + t ≤ 2,

⇒ 0 = log(1) ≤ log(1− t) ≤ log(2) = 0,
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3.2. The hyperbolic metric

resulting in

d(z, z′) = 2 log (1 + t) + log
(

1
1− t2

)
= log

(
1

1− t2

)
. (3.13)

Now

t =
‖z− z′‖
‖z̄− z′‖ =

√
(x′ − x)2 + (y′ − y)2

(x′ − x)2 + (y′ + y)2

⇒ 1− t2 =
4yy′

(x′ − x)2 + y′2 + 2yy′ + y2

⇒ 1
1− t2 =

(x− x′)2 + y2 + y′2

4yy′
+

1
2

and because y > 0 and y′ > 0, both summands are greater than 0, so equa-
tion (3.8) can be used to get

d(z, z′) = log
(

1
1− t2

)
= log

(
(x− x′)2 + y2 + y′2

4yy′
+

1
2

)
= max

{
log
(
(x− x′)2 + y2 + y′2

4yy′

)
, log

(
1
2

)}
= max

{
log
(

1
4

)
+ log

(
(x− x′)2 + y2 + y′2

yy′

)
, 0
}

= max
{

log
(
(x− x′)2

yy′
+

y
y′

+
y′

y

)
, 0
}

.

The three summands in the logarithm are all positive. If there is a rational
number r ∈ Q with r ≤ y

y′ or r ≤ y′
y then

0 = log(r) ≤ log
(

y
y′

)
≤ log

(
(x− x′)2

yy′
+

y
y′

+
y′

y

)
,

shows that the logarithm is positive. If however either y
y′ or y′

y is a microbe
(positive but smaller than any rational number), then the other one is a big
element, and then the logarithm is positive too. Either way the logarithm is
greater than 0, so

d(z, z′) = max
{

log
(
(x− x′)2

yy′
+

y
y′

+
y′

y

)
, 0
}

= log
(
(x− x′)2 + y2 + y′2

yy′

)
,
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3. The hyperbolic distance

proving the first formula. From that result, use (3.8) again with three posi-
tive summands to get the second formula

d(z, z′) = log
(
(x− x′)2 + y2 + y′2

yy′

)
= log

(
(x− x′)2

yy′
+

y
y′

+
y′

y

)
= max

{
log
(
(x− x′)2

yy′

)
, log

(
y
y′

)
, log

(
y′

y

)}
.

Then ‖z̄− z′‖2= (x− x′)2 + (y′ + y)2 = (x− x′)2 + y2 + 2yy′ + y′2 gives the
third formula

d(z, z′) = log
(
(x− x′)2 + y2 + y′2

yy′

)
= max

{
log
(
(x− x′)2 + y2 + y′2

yy′

)
, 0
}

= max
{

log
(
(x− x′)2 + y2 + y′2

yy′

)
, log(2)

}
= log

(
(x− x′)2 + y2 + y′2

yy′
+ 2
)

= log
(
(x− x′)2 + y2 + 2yy′ + y′2

yy′

)
= log

(
‖z̄− z′‖2

yy′

)
For the last formula, if

‖z− z′‖2

yy′
=

(x− x′)2 + (y− y′)2

yy′
=

(x− x′)2 + y2 + y′2

yy′
− 2

is positive, then equation (3.8) from proposition 3.4 can be used twice

d(z, z′) = log
(
(x− x′)2 + y2 + y′2

yy′

)
= log

(
(x− x′)2 + y2 + y′2

yy′
− 2 + 2

)
= max

{
log
(
(x− x′)2 + y2 + y′2

yy′
− 2
)

, log(2)
}

= max
{

log
(
‖z− z′‖2

yy′

)
, 0
}

.

If however

(x− x′)2 + y2 + y′2

yy′
− 2 ≤ 0,

then

(x− x′)2 + y2 + y′2

yy′
≤ 2
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3.2. The hyperbolic metric

and

0 ≤ d(z, z′) = log
(
(x− x′)2 + y2 + y′2

yy′

)
≤ log(2) = 0,

which verifies the last formula

d(z, z′) = max
{

log
(
‖z− z′‖2

yy′

)
, 0
}

. �

Proposition 3.9 Let z = x + iy, z′ = x′ + iy′ ∈ B. Then

d(z, z′) = log
(

‖1− z̄z′‖2

(1− ‖z‖2)(1− ‖z′‖2)

)
Proof As in the last proof equation (3.13) holds again

d(z, z′) = log(D(z, z′)) = log
(

1 + t′

1− t′

)
= log

(
(1 + t′)2

1− t′2

)
= log

(
1

1− t′2

)
since 1 ≤ 1 + t′ ≤ 2. For

t′ =
‖z− z′‖
‖1− z̄z′‖ =

√
(x− x′)2 + (y− y′)2

(1− xx′ − yy′)2 + (x′y− xy′)2 ,

the formula follows from the calculation

d(z, z′) = log
(

1
1− t′2

)
= log

(
‖1− z̄z′‖2

‖1− z̄z′‖2−‖z− z′‖2

)
= log

(
‖1− z̄z′‖2

(1− ‖z‖2)(1− ‖z′‖2)

)
. �

Proposition 3.10 Let P = (x, y), Q = (x′, y′) ∈ B0 with z =
√

1− x2 − y2 and
z′ =

√
1− x′2 − y′2. Then

d(P, Q) = log
(

1− (xx′ + yy′)
zz′

)
.

Proof The strategy is to use the first formula of proposition 3.8 for points
u + iv, u′ + iv′ ∈ HF2 that are sent to P, Q ∈ B0 via the identification (1.4)

(x, y, z) =
(

1− (u2 + v2)

1 + u2 + v2 ,
−2u

1 + u2 + v2 ,
2v

1 + u2 + v2

)
.

Use

1− (xx′ + yy′)
zz′

=
(u− u′)2 + v2 + v′2

2vv′
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HF2 αi

i

α−1i

x+iy

Figure 3.1: Points x + iy ∈
HF2 with the property that
D(i, x + iy) = α, lie on a Eu-
clidean circle centered at 1

2 (α +

α−1) with radius 1
2 (α− α−1).

in

log
(

1− (xx′ + yy′)
zz′

)
= log

(
(u− u′)2 + v2 + v′2

vv′

)
+ log

(
1
2

)
= d(P, Q)

to get the formula for d in B0. �

Lemma 3.11 The points z ∈ HF2 that satisfy D(i, z) = α lie on a (Euclidean)
circle centered at 1

2 (α + α−1)i ∈ HF2 with radius 1
2 |α− α−1| as in figure 3.1.

Proof Let z = x + iy ∈ HF2 and

α = D(i, z) =
1 + t
1− t

=
1 + ‖i−z‖

‖−i−z‖

1− ‖i−z‖
‖−i−z‖

=

√
x2 + (1 + y)2 +

√
x2 + (1− y)2√

x2 + (1 + y)2 −
√

x2 + (1− y)2

using the defintion of the cross ratio on HF2 (1.10). In the following let α > 1
without loss of generality. Use this to calculate the position of the middle
point

α + 1
α

2
=

x2 + y2 + 1
2y

and the radius

α− 1
α

2
=

1
2y

√
x4 + y4 + 2x2y2 + 2x2 − 2y2 + 1
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for later use. To check whether or not z lies on the circle, we calculate its
Euclidean distance from the center∥∥∥∥∥z−

α + 1
α

2
i

∥∥∥∥∥ =

√√√√x2 +

(
y−

α + 1
α

2

)2

=

√
x2 +

(
y− x2 + y2 + 1

2y

)2

=
1

2y

√
x4 + y4 + 2x2y2 − 2y2 + 2x2 + 1 =

α− 1
α

2

and see that it is indeed the claimed quantity. �

Proposition 3.12 The hyperbolic distance of a point

Mi =
(

a b
c d

)
i =

ai + b
ci + d

for M ∈ PGL+(2, F)

to the point i ∈ HF2 is

d(i, Mi) = max
{

log(a2), log(b2), log(b2), log(d2)
}
− log(det(M)).

Proof [2]
Calculate the coordinates of the point

Mi =
ai + b
ci + d

=
ac + bd
c2 + d2 +

det(M)

c2 + d2 i = x + iy.

Let D(i, Mi) = α ≥ 1. By the previous lemma 3.11, the point Mi lies on the
circle that goes through αi and α−1i and is centered on the imaginary axis.
A non-Archimedean version of Thales’ theorem can now be used to show
that there is a right angle between the lines αi Mi and α−1i Mi as drawn in
figure 3.1. The scalar product(

x
y− α

)
·
(

x
y− α−1

)
= x2 + (y− α)(y− α−1) = x2 + y2 − αy− α−1y +

α

α

=

(
ac + bd
c2 + d2

)2

+

(
det(M)

c2 + d2

)2

+ 1−
(

α +
1
α

)
det(M)

c2 + d2

=
a2 + b2 + c2 + d2 −

(
α + 1

α

)
det(M)

c2 + d2

has to be zero, resulting in

a2 + b2 + c2 + d2 −
(
α + 1

α

)
det(M)

c2 + d2 = 0

⇒ a2 + b2 + c2 + d2 −
(

α +
1
α

)
det(M) = 0

⇒ α +
1
α
=

a2 + b2 + c2 + d2

det(M)
.
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B

A
A′

M

P

P′

B

A

A′
M

P

P′

Figure 3.2: There is
a different formula
for the hyperbolic
distance d(A, A′)
between two points
A, A′ ∈ B depending
on whether they lie
on the same side of
the middle point M
(Propositon 3.13).

Since D(i, Mi) = α ≥ 1,

α ≤ α +
1
α
≤ 2α ⇒ log(α) ≤ log

(
α +

1
α

)
≤ 0 + log(α),

so using (3.7) and (3.6) for the positive elements a2, b2, c2 and d2 results in
the stated formula

d(i, Mi) = log(D(i, Mi)) = log(α) = log
(

α +
1
α

)
= log

(
a2 + b2 + c2 + d2

det(M)

)
= log

(
a2 + b2 + c2 + d2)− log (det(M))

= max
{

log(a2), log(b2), log(c2), log(d2)
}
− log (det(M)) . �

To get formulae for the hyperbolic distance d(A, A′) of two points A, A′ in
the Poincaré-disc model B of the hyperbolic plane, remember that the two
points define a unique hyperbolic line that can be extended to the points
P, P′ ’at infinity’, which lie on the Euclidean unit-circle in F2. The line AA′
is a Euclidean arc and contains a unique midpoint M that has the same Eu-
clidean distance to P and P′.

Proposition 3.13 Let A 6= A′ ∈ B form a hyperbolic line with the corresponding
’points at infinity’ P, P′ and with midpoint M as in figure 3.2 . Then

d(A, A′) =

{
log |A′P| − log |AP|, if A′ lies between A and M
2 log |PP′| − (log |AP|+ log |A′P′|) , if M lies between A and A′,

(3.14)

where |CD| denotes the Eudlidean distance between C and D for all C, D ∈ B.

Proof [2]
In the first case, if A′ lies between A and M, by geometric considerations,
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the triangle inequality and the properties (3.2) and (3.5) of the logarithm

|MP′| ≤ |A′P′| ≤ |AP′| ≤ |PP′| ≤ 2|MP′|
⇒ log |MP′| ≤ log |A′P′| ≤ log |AP′| ≤ log |PP′| ≤ log(2) + log |MP′| = log |MP′|
⇒ log |A′P′| = log |AP′| = log |MP′|

hold. Calculate

d(A, A′) = log(D(A, A′)) = log
(
|A′P||AP′|
|AP||A′P′|

)
= log |A′P|+ log |AP′| − log |AP| − log |A′P′| = log |A′P| − log |AP|

using the formula for D from (1.11) and the properties of the logarithm (3.2),
(3.7). In case M lies between A and A′, see as before that

log |A′P| = log |MP| = log |PP′| = log |MP′| = log |AP′|,

resulting in

d(A, A′) = log |A′P|+ log |AP′| − log |AP| − log |A′P′|
= 2 log |PP′| −

(
log |AP|+ log |A′P′|

)
.

Note that those two possibilities are the only ones, after swapping A and A′

if necessary. In the case that A′ = M, both formulas are correct. �

Corollary 3.14 The point A ∈ B has hyperbolic distance 0 from the origin O ∈ B
(is in the same equivalence class as O in HF2) if and only if

log(1− ‖A‖) = 0.

Proof The hyperbolic line spanned by A and O is a Euclidean line segment
and M = O. So

d(A, O) = log |OP| − log |AP| = log(1)− log(1− |AO|) = 0− log(1− ‖A‖)

implies, d(A, O) = 0 if and only if log(1− ‖A‖) = 0. �

Proposition 3.15 Let A, A′ ∈ B and let s = 1− ‖A‖ be the Euclidean distance
from A to the nearest point on ∂B. Then d(A, A′) = 0 if and only if A′ lies in a
Euclidean circle in B, centered at A, with radius r, where r satisfies log(s− r) =
log(s), or equivalently, log(1− r

s ) = 0.

Proof [2]
First note that Euclidean circles are also hyperbolic D-circles, but they may
have different centers or radii. This could be proven in detail by the fact that
D is invariant under rotation-subgroups of PGL+(2, F). So let the Euclidean
circle around A with radius r have the hyperbolic center C. For symmetry
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B

A

A′

A′′

C

P ∈ ∂B

r

s−r

Figure 3.3: Two points A, A′ ∈ B
have hyperbolic distance d(A, A′) =
0 if and only if A′ lies on the Eu-
clidean circle around A with radius r,
such that log(s− r) = log(r). This
Euclidean circle is also a hyperbolic
circle around C.

reasons, C needs to be on the line OA and A lies between O and C. Let A′′

be the point that lies on the circle when the line AC is prolonged and let P
be its ideal end point on the boundary. For that point A′′,

d(A, A′′) = log |PA| − log |PA′′| = log(s)− log(s− r)

holds by (3.14), so d(A, A′′) = 0 if and only if log(s− r) = log(s).

If d(A, A′′) = 0, then by the triangle inequality also 0 = d(C, A′′) = d(C, A′)
and d(A, C) = 0. So d(A, A′) ≤ d(A, C) + d(C, A′) = 0.

For the other direction, assume by contradiction that d(A, A′′) 6= 0 and
d(A, A′) = 0. Then d(A, C) 6= 0 or d(C, A′′) 6= 0.

In the first case d(A, C) 6= 0, use the triangle inequality twice to see 0 <
d(A, C) ≤ d(A, A′) + d(C, A′) = d(C, A′) ≤ d(A, A′) + d(A, C) = d(A, C),
so d(A, C) = d(C, A′). The two points A and A′ have the same hyperbolic
distance from C, so they lie on the same hyperbolic circle with midpoint C,
which is the Euclidean circle. But the Euclidean center A cannot lie on the
circle around A.

In the second case d(C, A′′) 6= 0, see that d(C, A′) 6= 0 since A, A′ have
the same hyperbolic distance. Then a similar calculation 0 < d(C, A′) ≤
d(A, C) + d(A, A′) = d(A, C) ≤ d(A, A′) + d(C, A′) = d(C, A′) shows that
d(A, C) = d(C, A′) > 0 which again cannot be, since the hyperbolic circle
also has to be a Euclidean circle. �
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Chapter 4

The tree of a hyperbolic plane

4.1 Λ-trees

As in the last chapter, F is a non-Archimedean, Euclidean, microbial field
and TF2 the set of equivalence classes with metric d. This metric space
has the surprising property that it is a kind of tree as will be elaborated
in this chapter. In graph theory, trees are connected graphs without cycles.
This means that there is a unique path between two vertices. The distance
between two points is the amount of edges on this path. Then the path is
isometric to a closed Z-interval. This view of paths as Z-intervals will be
used to generalize it to intervals of other subgroups of R. The next section
is concerned with this generalization, following [7] closely.

Definition 4.1 Given a soubgroup Λ ⊂ R, a Λ-metric space T is a metric space,
where all distances are numbers in Λ.

The set of equivalence classes TF2 = HF2/∼ with metric d = log D is such
a Λ-metric space for Λ = log(F+). Usual trees from graph theory are Z-
metric spaces.

Definition 4.2 Given λ1 ≤ λ2 ∈ Λ, the (closed) Λ-interval from λ1 to λ2 is
the set of the form [λ1, λ2] = {λ ∈ Λ : λ1 ≤ λ ≤ λ2} ⊂ Λ and λ1, λ2 are
its endpoints. A subspace of a Λ-metric space that is isometric to a Λ-interval is
called a (closed) Λ-segment. A segment and its corresponding interval [λ1, λ2] are
called nondegenerate if λ1 < λ2. Nondegenerate segments and intervals have two
endpoints.

Definition 4.3 A Λ-metric space T is a Λ-tree if it satisfies

(a) For every two points in T, there is a Λ-segment in T with those endpoints.

(b) The intersection of two Λ-segments in T with one endpoint in common is
again a Λ-segment.
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4. The tree of a hyperbolic plane

(c) The union of two Λ-segments, whose intersection is a single point, which is
endpoint of each, is again a Λ-segment.

Property (a) guarantees that T is ’connected’ via Λ segments. The second
property (b) makes sure that there are no cycles, which is the main charac-
teristic of a tree. But it also has a more subtle implication. In fact, one source
[2] assumes unique segments in (a), which already guarantees the no cycle
property. It is however still necessary to have property (b) as the following
example shows:

Example 4.4 Let Λ = Q. Define T to be the disjunct union of three copies of
(−∞,

√
2) ∩Q ⊂ Q with a special metric d. First define the positive number

dp =

{
4− p2, if p > 0
4, if p ≤ 0

for every p ∈ (−∞,
√

2) ∩Q. Then let

d(p, q) =

{
|dp − dq|, if p and q lie on the same interval
dp + dq, if p and q lie on different copies of the interval

defines a metric with values in Q. Imagine the three intervalls to be glued together
at
√

2. The positive definiteness and symmetry of this d are directly visible, but the
triangle inequality requires some work. First, if p, q, r are all part of the same copy
in that order, then d(p, q) + d(q, r) = d(p, r) implies the triangle inequality. If
p ≤ q are in one copy, but r is in another, then

d(p, q) ≤ dp + dq ≤ dp + dq + 2dr

= d(p, r) + d(q, r) and
d(p, r) = dp + dr = dp − dq + dq + dr

= d(p, q) + d(q, r) and
d(q, r) = dq + dr ≤ dp + dr + dp − dq

= d(q, p) + d(p, r), since dq ≤ dp.

Lastly, if all three points are part of different copies, then

d(p, q) = dp + dq ≤ dp + dq + dr + dr

= d(p, r) + d(q, r).

In this Λ-metric space T, there are segments that go from one branch to another and
they are even unique for every pair of points. But if p, q, r are in different branches,
the segments pq and pr have an endpoint (p) in common, but their intersection is
[p,
√

2)∩Q, which is not a (closed) Q-segment anymore, violating property (b). So
this property (b) of Λ-trees not only guarantees the no-cycle property, but also that
the branch points have to be actual points in T.
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4.2. TF2 as a Λ-tree

Property (c) of Λ-trees makes sure that the metric on T agrees with the path
metric on the tree: If a segment pq is isometric to the interval [λ1, λ2], then
d(p, q) = λ2 − λ1.

Example 4.5 One might be tempted to build a R-tree by taking a subset of R2. For
example, one might take the union of the two coordinate-axes T = R×{0}∪ {0}×
R ⊂ R2 with the inherited Euclidean distance. This is a R-metric space and the
properties (a) and (b) are satisfied. However, the closed R-segments s = [0, 1]×{0}
and t = {0} × [0, 1], whose intersection is the single point {(0, 0)}, do not satisfy
property (c). Both intervals are isometric to the R-interval [0, 1] and so the union
should be isometric to [0, 2], with the endpoints having a distance of 2 from each
other, but d ((0, 1), (1, 0)) =

√
2 < 2, preventing this R-metric space from being a

R-tree.

4.2 TF2 as a Λ-tree

The following theorem is the main result of [2].

Theorem 4.6 TF2 with metric d is a Λ-tree.

The proof of this statement requires several lemmas. Here, a simplified
proof for Euclidan fields F is given. For the more general case, see [2].

Lemma 4.7 PGL+(2, F) acts transitively on hyperbolic lines.

Proof Let l, h be two hyperbolic lines in the Poincaré disc model B of the
hyperbolic plane. To prove the statement, it is necessary to find an isometry
f ∈ PGL+(2, F) that sends l to h. If l = h, then the f = Id is enough.
In the case that l 6= h, but they still meet in one point L, assume without
loss of generality (proposition 1.8) that l is on the first coordinate axis and
L = 0 ∈ B. Then there is another point H ∈ h \ l. Let r = ‖H‖∈ F (this is
possible in Euclidean fields). Then f can be the rotation that sends r ∈ B to
H ∈ B. This f will also send l to h. In the case that l does not cut h, take any
two points L ∈ l, H ∈ h. These two points then define a new hyperbolic line
g that cuts l and h in L and H. Create an f to send l to g and an f ′ to send
g to h as above. Then f ′ ◦ f ∈ PGL+(2, F) sends l to h. �

Corollary 4.8 The images of hyperbolic lines to TF2 are d-isometric to Λ = log(F+).
Also, hyperbolic line segments in HF2 project to Λ-segments in TF2.

Proof Use the half plane model HF2 of the hyperbolic plane. As PGL+(2, F)
acts transitively on lines, all lines are D-isometric to the line {iy ∈ HF2 : y >
0} ⊂ HF2, which is D-isometric to F+. Taking logarithms results in the
statement. �

Lemma 4.9 Given points P, Q, O ∈ HF2 with d(P, Q) = 0. Then the images of
the hyperbolic line segments OP and OQ coincide in TF2.
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4. The tree of a hyperbolic plane

O PR

Q
f (P)

f (R)

Figure 4.1: Lemma 4.9 states that if
d(P, Q) = 0, then the line segments
OP and OQ coincide in TF2. In the
proof, a rotation f ∈ PGL+(2, F) is
introduced that sends the line OP to
the line OQ.

Proof [2]
As d satisfies the triangle inequality, d(O, P) = d(O, Q). If O, P, Q are
hypberolically collinear, then the statement follows directly. If d(O, P) =
d(O, Q) = 0, then all points in the hyperbolic triangle 4OPQ have the
same image in TF2. If on the other hand d(O, P) = d(O, Q) 6= 0, then
assume without loss of generality that O is the origin of the Poincaré disk
model (as in figure 4.1). As in the proof of lemma 4.7, there is a rotation
f ∈ PGL+(2, F) that sends the line OP to the line OQ. D and also d is
PGL+(2, F) invariant, so d(O, Q) = d(O, P) = d(O, f (P)) and Q and f (P)
are on the same line (without loss of generality f (P) is even on the segment
OQ), so d(Q, f (P)) = 0. This implies that d(P, f (P)) = 0. For any R ∈ OP,
D(R, f (R)) ≤ D(P, f (P)), which can be seen from formula (1.11): By going
from P to R, ‖z1 − z2‖ goes down, ‖1− z1z2‖ goes up, so t becomes smaller
and so does D. This inequality then implies d(R, f (R)) = 0. So the rotation
f sends each point R from OP to a point f (R) from OQ with the same image
in TF2. [2] also provides a second proof in the Klein model B0. �

Lemma 4.10 Let P, Q, R ∈ HF2 with distinct images in TF2. Then the image of
the hyperbolic triangle4PQR in TF2 is either three Λ-segments with one common
endpoint or one Λ-segment with two points as end-points and one somewhere on
the inside as shown in figure 4.2.

P
Q

R
P′Q′

R′
O

HF2 � TF2

or

Figure 4.2: The hyperbolic triangle 4PQR in HF2 collapses to one of the tree like structures in
TF2. The proof of lemma 4.10 uses the fact that there is an interior point O (the incenter) and
points P′, Q′, R′ on the boundary of 4PQR with d(O, P′) = d(O, Q′) = d(O, R′) = 0. Viewing
the hyperbolic plane HF2 as a union of triangles, this can be extended to show that the quotient
TF2 is a Λ-tree.
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4.2. TF2 as a Λ-tree

B0

O
Y

Figure 4.3: Any hyperbolic trian-
gle in the Klein model B0 has to
be smaller than the one drawn here.
In this worst case, the Euclidean
distance from the closest boundary
point Y ∈ ∂4 is D(O, Y) =√
(3/2)(1)(1)−1(1/2)−1 =

√
3.

Since log(
√

3) = 0 in non-
Archimedean hyperbolic planes, the
Euclidean distance is d(O, Y) =
log(D(O, Y)) = 0.

Proof [2]
Note that there is an interior point of the triangle, for example the incenter
O (being equidistant from all three sides) that can be constructed with ruler
and compass and thus is in the hyperbolic plane since F is a Euclidean field.
The incenter O cannot be too far away from any boundary point, namely
D(O, ∂4PQR) ≤

√
3. To see this, consider the worst case scenario of the

biggest triangle in the Klein model B0 as shown in figure 4.3. Calculating
the cross ratio (1.9) results in D(X, ∂4PQR) = D(O, Y) =

√
3.

Since log(
√

3) = 0, d(O, Y) = 0 and because O is the incenter and has the
same Euclidean distance from every side, there are points P′, Q′, R′ on all
three sides with d(O, P′) = d(O, Q′) = d(O, R′) = 0. Using lemma 4.9 now
implies that each of the six small triangles in figure 4.2 are sent to a closed
Λ-line segment in TF2. This results in the three closed Λ-segments with
common endpoint O. If one of the points P, Q, R happens to be in the same
equivalence class as O, then the triangle is sent to just one Λ-segment that
somewhere contains O and the other point. �

With this lemma, the tools for the proof of theorem 4.6 are assembled (fol-
lowing [2]).

Proof of theorem 4.6 (a) Let [P] 6= [Q] ∈ TF2 with some representatives
P 6= Q ∈ HF2. Two points in HF2 define a unique hyperbolic line, and the
line is D-isometric to F+ as seen in the proof of lemma 4.7. So the projection
of the line to TF2 is d-isometric to Λ. To get the Λ-interval, take the interval
that corresponds to the endpoints [P], [Q]. �

Proof of theorem 4.6 (b) Given two closed Λ-segments [P][Q] and [P][R] in
TF2, consider the triangle 4PQR ⊂ HF2. As seen in lemma 4.10, the tri-
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4. The tree of a hyperbolic plane

angle either gets projected to three Λ-segments with a common endpoint
[O] ∈ TF2 in the middle, in which case the intersection of the two Λ-
segments is the new Λ-segment [P][O]. If the triangle is projected to a single
line segment, then the intersection is just the point [P] = [O] or [P][Q] is con-
tained in [P][R] or the other way round and the intersection is the smaller
of the two Λ-segments. This also implies the uniqueness of the Λ-segment.
Note that [O] ∈ TF2 is always an endpoint, thus the property that was dis-
cussed in example 4.4 is also satisfied. �

Proof of theorem 4.6 (c) Let [P][Q] and [Q][R] be two Λ-segments that only
intersect in {[Q]}. Then the first case in lemma 4.10 is not possible, implying
that the union of the two Λ-segments indeed is again a Λ-segment [P][R].�

The main step in the proof was lemma 4.10. The picture of a hyperbolic
triangle in TF2 (as in figure 4.2) shows that it is a Λ-tree. Seeing the plane
as an infinite union of triangles naturally leads to all of TF2 being a tree.

4.3 The tree of the hyperbolic plane over the Levi-
Civita field

The metric space TF2 is a Λ-tree and in this chapter, the tools for further
investigations have been developed. Choosing a specific field F allows to get
a better intuition about the tree. In the following, F is the Levi-Civita field
over the real numbers from chapter 2.2. It is a non-Archimedean, Euclidean,
microbial field with big elements such as X−1 and therefore its quotient TF2

is a Λ-tree by theorem 4.6. The logarithm with basis X−1 always takes on
rational values, so Λ = Q.

Proposition 4.11 Every point in TF2, where F is the Levi-Civita field, has (un-
countable) many directions (germs of closed segments that only intersect trivially
at that point). In graph-theoretic language, the degree of every vertex is infinite.

Proof Using the Poincaré disk B, the point can be taken to be 0 ∈ B without
loss of generality. corollary 3.14 states that a point A ∈ B lies in the same
equivalence class as the origin if and only if log(1−‖A‖) = 0. As log(r) = 0
for real numbers r ∈ R, any A ∈ B that has a real Euclidean distance
from 0 ∈ B (for example A ∈ (0, 1) ∩R ⊂ F[i]) results in log(1− ‖A‖) =
log(1− A) = 0. So, a huge part of B will collapse to the same equivalence
class in TF2. Are there even any elements in a different equivalence class
left? Points such as 1− X ∈ B are extremely close to the boundary of B, and
they are far enough away from 0 ∈ B to have positive hyperbolic distance,
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4.4. Geometric properties of TF2

as proposition 3.13 with A′ = O and P = 1 ∈ B

d(O, A) = log |OP| − log |AP| = log(1)− log(1− ‖A‖)
= − log(1 + (1− X)) = − log(X) = 1

shows. There is an uncountable amount of real-number-pairs (and even
more in the Euclidean plane over the Levi-Civita field F) on ∂B and each of
them can have their own ball of radius 2X around themselves. So for any
real-number-pair R ∈ ∂B ⊂ F2, there is A = (1− X)R ∈ B that has hyper-
bolic distance 1 from O as previously seen. As all of them are contained
in the disjoint balls around the real numbered points on ∂B, all of those
points A also lie in different equivalence classes, proving that there is an
uncountable amount of points in TF2 with hyperbolic distance 1 from the
origin. �

Any nondegenerate Q-segment contains (countable) infinitely many points
and every single one of them is a startpoint of (uncountabe) infinite other
Q-segments. This leads to the surprising property that someone standing on
one point in TF2 has more choices of where to go (uncountable infinite) than
how many (countable infinite) points he can actually pass, when walking
from one point to another.

4.4 Geometric properties of TF2

One of the original motivations to consider planes over non-Archimedean
fields was to investigate whether Archimedes’ axiom (A) in Hilbert’s sys-
tem (see Appendix A) of axioms actually was required. In chapter 1 the
hyperbolic plane over a general field was set up and the group of isome-
tries PGL+(2, F) was used to be able to define congruence. Usually (in
the Archimedean hyperbolic plane) this group arises from the metric on
the hyperbolic plane. The analogous construction of the metric for non-
Archimedean, microbial fields naturally leads to the Λ-tree TF2. Does it
satisfy Hilberts axioms of a neutral geometry? If lines are defined to be sub-
sets of TF2, which are isometric to Λ, then the first property (I1) already is
violated: For two distinct points, there might be many lines going through
them. However, every line contains at least two points (I2) and there are
three non-collinear points (I3). Also the first axioms of betweenness (B1 -
B3) work out. But Pasch’s axiom (B4) is again not necessarily true for these
lines. The axioms of congruence (C1 - C6) are satisfied.

Lines in TF2 are instead taken to be images of hyperbolic lines in HF2. By
lemma 4.9, the uniqueness of the hyperbolic line in HF2 transfers over to
lines in TF2. The other axioms (I2 - I3), (B1 - B4) (including Pasch’s (B4)) and
(C1 - C6) are also satisfied. Since the hyperbolic distances between points
lie in Λ ⊂ R, the Archimedean axiom (A) is satisfied although the base
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4. The tree of a hyperbolic plane

field is non-Archimedean. It turns out that the tree of a non-Archimedean
Euclidean hyperbolic plane indeed satisfies the axioms of neutral geometry
and surprisingly even Archimedes’ axiom (A).
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Chapter 5

Conclusion

We successfully constructed a hyperbolic plane over non-Archimedean base
fields and investigated some of its properties. In chapter 1, we saw that
it is possible to have a geometry in Hilbert’s sense without defining a dis-
tance on the hyperbolic plane over a general Euclidean ordered field. In-
stead it was enough to consider the cross ratio, a purely algebraic notion,
and the group isometries PGL+(2, F), which preserve the cross ratio. Chap-
ter 2 provides plenty of examples and counter examples for the various
properties. Most notably we constructed the non-Archimedean Euclidean
microbial Levi-Civita field, which served as an example for the remaining
chapters. In the search for more similarities to the Archimedean case, we
introduced the logarithm of microbial fields in chapter 3, which allowed us
to define the pseudo-metric d on the hyperbolic plane HF2. Factoring out
equivalence classes resulted in the Λ-metric space TF2, which is the closest
we get to a hyperbolic metric space in the Archimedean case.

In chapter 4, TF2 was shown to be a Λ-tree. The main step was lemma 4.10,
which specified how triangles look like in TF2. The process of going from a
triangle in Euclidean geometry to a hyperbolic triangle intuitively feels like
squeezing the triangle (figure 5). The analogy for positively curved spaces
is that triangles look like the Euclidean triangles were inflated. Interpreting
lemma 4.10 under this point of view means that the triangle was even more
squeezed. So to speak, the triangle in the tree of a non-Archimedean hy-
perbolic plane is the most hyperbolic triangle, it is not possible to squeeze
it further. Although this is a pleasing point of view, it is not really backed
by the math presented here and manifolds usually do not have infinitely
negative curvature.

It is notable that we arrived at the results using geometric tools. The connec-
tion of non-Archimedean hyperbolic planes to Λ-trees was established by [8]
using valuation rings O, where the associated Λ-tree consists of homothety
classes of O-lattices. The geometrical point of view first considered by Brum-
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5. Conclusion

Figure 5.1: The appearance of triangles depends on the curvature of their surface. On the left
is a triangle in a surface with positive curvature. Next, is the Euclidean triangle, followed by a
hyperbolic triangle. Imagining this as a process of squeezing the triangle leads to the possibility
to squeeze so much that there is no interior left. This corresponds to what happens to a triangle
in TF2.

fiel [2] and presented in this thesis achieves the same result without using
some of the more advanced algebraic tools. In addition to Brumfiel’s paper
we gave various examples of ordered fields, discussed the necessity of the
properties of Λ-trees and considered the connection to Hilbert’s formulation
of axiomatic geometry.
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Appendix A

Hilbert’s axioms for geometry

Here are Hilbert’s axioms for geometry and a series of definitions that arise
in this context. [5] contains a wonderful discussion of these axioms.

A neutral geometry (or Hilbert plane) is a set of points P with a set of lines
L ⊂ 2P satisfying the following axioms (I1 - I3, B1 - B4, C1 - C6).

A Euclidean plane is a neutral geometry satisfying (P) and (E).

A hyperbolic plane is a neutral geometry satisfying (L).

Axioms of incidence

(I1) For any two distinct points A, B there exists a unique line l containing
A and B.

(I2) Every line contains at least two points.

(I3) There exist three noncollinear points (that is, three points not all con-
tained in a single line).

Axioms of betweenness
Postulate a relation between sets of three points A, B, C, called B is between
A and C (or A ∗ B ∗ C) with the properties

(B1) If A ∗ B ∗ C, then A, B, C are three distinct points on a line, and also
C ∗ B ∗ A.

(B2) For any two points A 6= B there exists a point C such that A ∗ B ∗ C.

(B3) Given three distinct points on a line, one and only one of them is
between the other two.

(B4) (Pasch). Let A, B, C be three non-collinear points, and let l be a line not
containing any of A, B, C. If l contains a point D such that A ∗ D ∗ B,
then it must also contain a point P with either B ∗ P ∗ C or A ∗ P ∗ C.
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A. Hilbert’s axioms for geometry

This group of axioms (B1 - B4) allows the definition of a line segment AB
as the set consisting of the points A and B and of all the points that lie in
between A and B. A ray

−→
AB is the set that contains A and B, as well as all

points P that satisfy A ∗ P ∗ B or A ∗ B ∗ P. An angle ^ABC is the union of
two rays

−→
BA and

−→
BC. The next set of axioms postulates a relation congruence

for line segments AB ∼= CD (C1 - C3) and angles ^ABC ∼= ^DEF (C4 - C6).

Axioms of congruence

(C1) Given a line segment AB, and given a ray r originating at a point C,
there exists a unique point D on the ray r such that AB ∼= CD.

(C2) If AB ∼= CD and AB ∼= EF, then CD ∼= EF. Every line segment is
congruent to itself.

(C3) (Addition). Given three points A, B, C on a line satisfying A ∗ B ∗ C,
and three further points D, E, F on a line satisfying D ∗ E ∗ F, if AB ∼=
DE and BC ∼= EF, then AC ∼= DF.

(C4) Given an angle ^BAC and given a ray
−→
DF, there exists a unique ray

−→
DE, on a given side of the line DF, such that ^BAC ∼= ^EDF.

(C5) For any three angles α, β, γ, if α ∼= β and α ∼= γ, then β ∼= γ. Every
angle is congruent to itself.

(C6) (SAS). Given triangles ABC and DEF, suppose that AB ∼= DE and
AC ∼= DF, and ^BAC ∼= ^EDF. Then the two triangles are congruent,
namely, BC ∼= EF, ^ABC ∼= ^DEF and ^ACB ∼= ^DFE.

Other notable axioms that are sometimes used in this context:

(P) (Parallel axiom, Playfair). For each point A and each line l, there is
at most one line containing A that is parallel to l (two distinct lines
are parallel if they have no points in common, every line is parallel to
itself).

(E) (Circle-circle intersection property). Given two circles Γ, Λ, if Λ con-
tains at least one point inside Γ, and Λ contains at least one point
outside Γ, then Γ and Λ will meet.

(A) (Archimedes). Given line segments AB and CD, there is a natural
number n, such that n copies of AB added together will be greater
than CD.

(L) (Existence of limiting parallel lines). For each line l and each point A
not on l, there are two rays

−→
Aa,
−→
Aa′ from A, not lying on the same line,

and not meeting l, such that any ray
−→
An in the interior of the angle

^aAa′ meets l.
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